Gong-Li Tang's Research Group | State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences |
Publications from Independent Work (SIOC): (2024 - ) 111. He, J.-B.†; Wu, L.†; Wei, W.†; Meng, S.; Liu, Z.-T.; Wu, X.; Pan, H.-X.; Yang, S.; Liang, Y.*; Zhou, J.*; Tang, G.-L.* (2023) Enzymatic catalysis favours eight-membered over five-membered ring closure in bicyclomycin biosynthesis. Nat. Catal. 6, 637–648. 110. Guo, W.; Xiao, Z.; Huang, T.; Zhang, K.; Pan, H.-X.; Tang, G.-L.; Deng, Z.; Liang, R.*; Lin, S*. (2023) Identification and characterization of a strong constitutive promoter stnYp for activating biosynthetic genes and producing natural products in streptomyces. Microb. Cell. Fact. 22, 127. 109. Yin, S.; Lan, W.; Hou, X.-F; Liu, Z.; Xue, H.; Wang, C.; Tang, G.-L.; Cao, C*. (2023) Trioxacarcin A Interactions with G-Quadruplex DNA Reveal Its Potential New Targets as an Anticancer Agent. J. Med. Chem. 66, 6798-6810. 108. Shao, N; Ma, X.; Zhang, Y.-Y.; Yang. D.; Ma, M.*; Tang, G.-L.* (2023) Dihydrofolate reductase-like protein inactivates hemiaminal pharmacophore for self-resistance in safracin biosynthesis. Acta. Pharm. Sin. B. 13, 1318-1325. 107. 王飞, 金文兵, 侯现锋, 唐功利*, 潘海学*. (2023) 金核霉素生物合成途径的体内研究和关键代谢物鉴定 有机化学,43, 2561-2566. (2022) 106. Chen, X.; Pan, H.-X.*; Tang, G.-L.* (2022) Newly Discovered Mechanisms of Antibiotic Self-Resistance with Multiple Enzymes Acting at Different Locations and Stages. Antibiotics. 12, 35. 105. Chen, X†; Bradley, N.P†.; Lu, W†.; Wahl, K.L.; Zhang, M.; Yuan, H.; Hou, X.-F.; Eichman. B.F. *; Tang, G.-L.* (2022) Base excision repair system targeting DNA adducts of trioxacarcin/LL-D49194 antibiotics for self-resistance. Nucleic. Acids Res. 50, 2417-2430. 104. Zhang, Y.-Y; Shao, N.; Wen, W.-H.; Tang, G.-L.* (2022) A Cryptic Palmitoyl Chain Involved in Safracin Biosynthesis Facilitates Post-NRPS Modifications. Org. Lett. 24, 127-131. 103. Nie, Q.Y.; Hu, Y.; Hou, X.-F.; Tang, G.-L.* (2022) Biosynthesis of DNA-Alkylating Antitumor Natural Products. Molecules. 27, 6387. 102. Pei, Z.-F†.; Yang, M.-J†.; Zhang, K.; Jian, X.-H.; Tang, G.-L.* (2022) Heterologous characterization of mechercharmycin A biosynthesis reveals alternative insights into post-translational modifications for RiPPs. Cell Chem. Biol. 29, 650-659. 101. Han, T.-Y.; Zhang, K.; Tang, G.-L.*; Zhou, Q*. (2022) Characterizing Post-PKS Modifications of 16-Demethyl-rifamycin Revealed Two Dehydrogenases Diverting the Aromatization Mode of Naphthalenic Ring in Ansamycin Biosynthesis. Chin. J. Chem., 40, 1553 – 1558 100. Zou, Z.-R.; Zhang, K.; Han, T.-Y.; Zhou, Q; Lin, S.; Hou, X.-F.*; Tang, G.-L.* (2022) Two-enzyme cascade catalyzed trideuteromethylative modification of natural products. Tetrahedron.129, 133137. 99. Gao, Y.-H.; Nie, Q.-Y.; Hu, Y.; Lu, X.; Xiang, W.; Wang, X.*, Tang, G.-L.* (2022) Discovery of glycosylated naphthacemycins and elucidation of the glycosylation. Biochem. Biophys. Res. Commun. 622,122-128. (2021) 98. Crawford, J.M.; Tang, G.-L.; Herzon, S.-B. (2021) Natural Products: An Era of Discovery in Organic Chemistry. J. Org. Chem. 86, 10943-10945. 97. Mullins, E.-A.; Dorival, J.; Tang, G.-L.; Boger, D.-L.; Eichman, B.-F*. (2021) Structural evolution of a DNA repair self-resistance mechanism targeting genotoxic secondary metabolites. Nat. Commun. 12, 6942. 96. Wen, W. -H.; Zhang, Y.; Zhang, Y.-Y.; Yu Q, Jiang, C.-C.; Tang, M.-C.; Pu, J.-Y.; Wu, L.; Zhao, Y.-L.; Shi, T.*; Zhou, J.*; Tang, G.-L.* (2021) Reductive inactivation of the hemiaminal pharmacophore for resistance against tetrahydroisoquinoline antibiotics. Nat. Commun. 12, 7085. 95.Zhang, W.-H., Wang, F.; Wang, Y.-L.; You, S.*; Pan, H.-X.*; Tang, G.-L.* (2021) Identification and Characterization of Enzymes Catalyzing Early Steps in Miharamycin and Amipurimycin Biosynthesis. Org. Lett. 23, 8761-8765. 94. Pei, Z.-F.†; Yang, M.-J.†; Zhang, K.; Jian, X.-H.; Tang, G.-L.* (2021) Heterologous characterization of mechercharmycin A biosynthesis reveals alternative insights into post-translational modifications for RiPPs. Cell Chem. Biol. PMID: 34474009. 93. Nie, Q.-Y.; Ji, Z.-Y.; Hu, Y.; Tang, G.-L.* (2021) Characterization of Highly Reductive Modification of Tetracycline D-Ring Reveals Enzymatic Conversion of Enone to Alkane. ACS Catalysis 11, 8399-8406. 92. Hu, Y.; Zhou, Q.; Zhang, Z.; Pan, H.-X.; Ilina, Y.; Metsä-Ketelä, M.; Igarashi, Y.; Tang, G.-L.* (2021) Deciphering the Origin and Formation of Aminopyrrole Moiety in Kosinostatin Biosynthesis. Chin. J. Chem., 39, 3329-3333. 91. Zhou, Q.†; Peng, S.-Y.†; Zhang, K.; Luo, G.-C.; Han. L.; He, Q.-L.*; Tang, G.-L. * (2021) A Flavin-Dependent Monooxygenase Mediates Divergent Oxidation of Rifamycin. Org. Lett. 23, 2342-2346. (2020) 90. Zheng, X.-F.; Liu, X.-Q.; Peng, S.-Y.; Zhou Q.*; Xu. B. *; Yuan, H. *; Tang, G.-L. (2020) Characterization of the Rifamycin-Degrading Monooxygenase From Rifamycin Producers Implicating Its Involvement in Saliniketal Biosynthesis. Front. Microbiol. 11, 971. 89. Yin, Y.; Shen, Y.; Meng, S.; Zhang, M.; Pan, H.-X.; Tang, G.-L. * (2020) Characterization of a membrane-bound O-acetyltransferase involved in trioxacarcin biosynthesis offers insights into its catalytic mechanism. Chin. J. Chem. 38, 1607-1611. 88. Wang, F.; Zhang, W.-H.; Zhao, J.; Kang, W.-J.; Wang, S.; Yu. B.; Pan, H.-X.*; Tang, G.-L.*(2020) Characterization of Miharamycin Biosynthesis Reveals a Hybrid NRPS-PKS to Synthesize High-Carbon Sugar from a Complex Nucleoside. J. Am. Chem. Soc. 142, 5996-6000.
87. Hu, Y.†; Zhang, Z.†; Yin, Y.; Tang, G.-L.*(2020) Directed biosynthesis of iso-aclacinomycins with improved anticancer activity. Org. Lett. 22, 150-154. (2019) 86. Ji, Z.-Y.†; Nie, Q.-Y†.; Yin, Y.; Zhang, M.; Pan, H.-X.; Hou, X.-F.*; Tang, G.-L.*(2019) Activation and Characterization of a Cryptic Gene Cluster Reveal Two Series of Aromatic Polyketides Biosynthesized by Divergent Tailoring Pathways. Angew. Chem. Int. Ed. 58, 18046-18054. 85. Jin, W.-B.; Wu, S.; Xu, Y.-F.; Yuan, H.*; Tang, G.-L.* (2019) Recent advances in HemN-like radical S-adenosyl-l-methionine enzyme-catalyzed reactions. Nat. Prod. Rep. 37, 17-28. 84. Zhou, Q.; Luo, G.-C.; Zhang, H.*; Tang, G.-L.* (2019) Discovery of 16-Demethylrifamycins by Removing the Predominant Polyketide Biosynthesis Pathway in Micromonospora sp. Strain TP-A0468. Appl. Environ. Microbiol. 85, e02597-18. 83. Shen, Y.; Nie, Q.-Y.; Yin, Y.; Pan, H.-X.; Xu, B.*; Tang, G.-L.*(2019) Production of a trioxacarcin analog by introducing a C-3 dehydratase into deoxysugar biosynthesis. Acta. Biochim. Biophys. Sin. (Shanghai) 51, 539-541. 82. Wang, S.; Zhang, Q.; Zhao, Y.; Sun, J.; Kang, W.; Wang, F.; Pan, H.; Tang, G.; Yu, B.* (2019) The Miharamycins and Amipurimycin: their Structural Revision and the Total Synthesis of the Latter. Angew. Chem. Int. Ed. 58, 10558-10562. 81. Pan, H.-X.; Chen, Z.; Zeng, T.; Jin, W.-B.; Geng, Y.; Lin, G. M.; Zhao, J.; Li, W.-T.; Xiong, Z.; Huang, S.-X.; Zhai, X.; Liu, H.-W.*; Tang, G.-L.* (2019) Elucidation of the Herbicidin Tailoring Pathway Offers Insights into Its Structural Diversity. Org. Lett. 21, 1374-1378. 80. Kang, W.-J.†; Pan, H.-X.†; Wang, S.; Yu, B.; Hua, H.*; Tang, G- L.* (2019) Identification of the Amipurimycin Gene Cluster Yields Insight into the Biosynthesis of C9 Sugar Nucleoside Antibiotics. Org. Lett. 21, 3148-3152. 79. Dong, L.; Shen, Y.; Hou, X.-F.; Li, W.-J.*; Tang, G.-L.* (2019) Discovery of Druggability-Improved Analogues by Investigation of the LL-D49194alpha1 Biosynthetic Pathway. Org. Lett. 21, 2322-2325. 78. Zhou, Q.; Luo, G.-C.; Zhang, H.-Z.*; Tang, G.-L.* (2019) 34a-Hydroxylation in Rifamycin Biosynthesis Catalyzed by Cytochrome P450 Encoded by rif-orf13. Chin. J. Org. Chem. 39, 1169-1174. (2018) 77. Wang, X.; Wu, S.; Jin, W.; Xu, B.*; Tang, G.*; Yuan, H.* (2018) Bioinformatics-guided connection of a biosynthetic gene cluster to the antitumor antibiotic gilvusmycin. Acta. Biochimica. Et Biophysica. Sinica. , 50, 516-518. 76. Pei, Z.-F.†; Yang, M.-J.†; Li ,L.†.; Jian, X.-H.; Yin, Y.; Li, D.; Pan, H.-X.; Lu, Y.; Jiang, W*.; Tang, G.-L.* (2018) Directed production of aurantizolicin and new members based on a YM-216391 biosynthetic system. Org. Biomol. Chem. 16, 9373-9376. 75. Wang, S.; Sun, J.; Zhang, Q.; Cao, X.; Zhao, Y.; Tang, G.; Yu, B.* (2018) Amipurimycin: Total Synthesis of the Proposed Structures and Diastereoisomers. Angew. Chem. Int. Ed. 57, 2884-2888. 74. Chen, X.-Y. †; Yin, Y. †; Xi, J.; Yuan, Y.; Li, Y.; Li, Q.; Wang, R.-X.; Yao, Z.*; Tang, G.-L.* (2018) 11‐Aza‐artemisinin Derivatives Exhibit Anticancer Activities by Targeting the Fatty Acid Binding Protein 6 (FABP6). Chin. J. Chem. 36, 1197-1201. 73. Hou, X.-F.†; Song, Y.-J.†; Zhang, M.; Lan, W.; Meng, S.; Wang, C.; Pan, H.-X.; Cao, C.*; Tang, G.-L.* (2018) Enzymology of Anthraquinone-γ-Pyrone Ring Formation in Complex Aromatic Polyketide Biosynthesis. Angew. Chem. Int. Ed. 57,13475-13479. 72. Zhang, Y.†; Wen, W.-H.†; Pu, J.-Y.; Tang, M.-C.; Zhang, L.; Peng, C.; Xu, Y.; Tang, G.-L.* (2018) Extracellularly oxidative activation and inactivation of matured prodrug for cryptic self-resistance in naphthyridinomycin biosynthesis. Proc. Natl. Acad. Sci. USA. 115,11232-11237. 71. 金文兵; 袁华; 唐功利* (2018) 天然产物中环丙烷官能团的构筑策略. 有机化学 38, 2324-2334. 70. Meng, S.; Tang, G.-L.*; Pan, H.-X.* (2018) Enzymatic formation of oxygen‐containing heterocycles in natural product biosynthesis. ChemBioChem 19, 2002-2022. 69. Jin, W.-B.†; Wu, S.†; Jian, X.-H.; Yuan, H.*; Tang, G.-L.* (2018) A radical S-adenosyl-L-methionine enzyme and a methyltransferase catalyze cyclopropane formation in natural product biosynthesis. Nat. Commun. 9:2771. 68. Qi, F.†; Lei, C.†; Li, F.; Zhang, X.; Wang, J.; Zhang, W.; Fan, Z.; Li, W.; Tang, G.-L.; Xiao, Y.*; Zhao, G.; Li, S.* (2018) Deciphering the late steps of rifamycin biosynthesis. Nat. Commun. 9:2342. 67. Wang, X.; Wu, S.; Jin, W.-B.; Xu, B.*; Tang, G.-L.*, Yuan, H.* (2018) Bioinformatics-guided connection of a biosynthetic gene cluster to the antitumor antibiotic gilvusmycin. Acta Biochim. Biophys. Sin. 50, 516-518. 66. Meng, S.; Han, W.; Zhao, J.; Jian, X.; Pan, H.-X.*; Tang, G.-L.* (2018) A Six‐Oxidase Cascade for Tandem C−H Bond Activation Revealed by Reconstitution of Bicyclomycin Biosynthesis. Angew. Chem. Int. Ed. 57, 719-723.
(2017) 65. Yuan, H.†; Zhang, J.†; Cai, Y.; Wu, S.; Yang, K.; Chan, S.; Huang, W.; Jin, W.-B.; Li, Y.; Yin, Y.; Igarashi, Y.; Yuan, S.*; Zhou, J.*; Tang, G.-L.* (2017) GyrI-like proteins catalyze cyclopropanoid hydrolysis to confer cellular protection. Nat. Commun. 8:1485.
64. He, N.†; Wu, P.†; Lei, Y.; Xu, B.; Zhu, X.; Xu, G.; Gao, Y.; Qi, J.; Deng, Z.; Tang, G.-L.; Chen, W.*; Xiao, Y.* (2017) Construction of an octosyl acid backbone catalyzed by a radical S-adenosylmethionine enzyme and a phosphatase in the biosynthesis of high-carbon sugar nucleoside antibiotics. Chem. Sci. 8, 444-451. 63. Song, L.-Q.†; Zhang, Y.-Y.†; Pu, J.-Y.†; Tang, M.-C.; Peng, C.; Tang, G.-L.* (2017) Catalysis of extracellular deamination by a FAD-linked oxidoreductase after prodrug maturation in the biosynthesis of saframycin A. Angew. Chem. Int. Ed. 56, 9116-9120.
(2014) 53. Qiu, H.-B.; Chen, X.-Y.; Li, Q.; Qian, W.-J.; Yu, S.-M.; Tang, G.-L.; Yao, Z.-J.* (2014) Unified flexible total synthesis of chlorofusin and artificial Click mimics as antagonists against p53-HDM2 interactions. Tetrahedron Lett., 55, 6055-6059. 52. He, H.-Y.; Yuan, H.; Tang, M.-C.; Tang, G.-L.* (2014) An unusual dehydratase acting on glycerate and a ketoreducatse stereoselectively reducing α-ketone in polyketide starter unit biosynthesis. Angew. Chem. Int. Ed. 53, 11315-11319
48. Wang, J.-B.; Zhang, F.; Pu, J.-Y.; Zhao, J.; Zhao, Q.-F.; Tang, G.-L.* (2014) Characterization of AvaR1, an autoregulator receptor that negatively controls avermectins production in a high avermectin-producing strain. Biotechnol. Lett. 36, 813-819. (2013)
45. 潘海学,唐功利* (2013) 非核糖体肽合成酶催化的非常规装配模式(邀请综述)。微生物学报,40, 1783-1795。
39. Liu, X.; Biswas, S.; Berg, M. G.; Antapli, C. M.; Xie, F.; Wang, Q.; Tang, M.-C.; Tang, G.-L.; Zhang, L.; Dreyfuss, G.; Cheng, Y.-Q.* (2013) Genomics-guided discovery of Thailanstatins A, B, and C as pre-mRNA splicing inhibitors and antiproliferative agents from Burkholderia thailandensis MSMB43. J. Nat. Prod. 76, 685-693.
37. Tang, M.-C.; He, H.-Y.; Zhang, F.; Tang, G.-L.* (2013) Baeyer-Villiger oxidation of acyl carrier protein-tethered thioester to acyl carrier protein-linked thiocarbonate catalyzed by a monooxygenase domain in FR901464 biosynthesis. ACS Catal. 3, 444-447. 36. Pan, H.-X.; Li, J.-A.; Shao, L.; Zhu, C.-B.; Chen, J.-S.; Tang, G.-L.*, Chen, D.-J.* (2013) Genetic manipulation revealing an unusual N-terminal region in a stand-alone non-ribosomal peptide synthetase involved in the biosynthesis of ramoplanins. Biotechnol. Lett. 35, 107-114.
35. He, H.-Y.†; Pan, H.-X.†; Wu, L.-F.; Zhang, B.-B.; Chai, H.-B.; Liu, W.; Tang, G.-L.* (2012) Quartromicin biosynthesis: two alternative polyketide chains produced by one polyketide synthase assembly line. Chem. Biol. 19, 1313-1323. 34. Xu, H.†; Huang, W.†; He, Q.-L.; Zhao, Z.-X.; Zhang, F.; Wang, R.; Kang, J.; Tang, G.-L.* (2012) Self-resistance to antitumor antibiotic: a DNA glycosylase triggers the base excision repair system in yatakemycin biosynthesis. Angew. Chem. Int. Ed. 51, 10532-10536. (Highlighted in Nat. Chem. Biol. 2012, 8, 873) 33. Chen, Y.-L.; Zhao, J.; Liu, W.; Gao, J.-F.; Tao, L.-M.; Pan, H.-X.*; Tang, G.-L.* (2012) Identification of phoslactomycin biosynthetic gene clusters from Streptomyces platensis SAM-0654 and characterization of PnR1 and PnR2 as positive transcriptional regulators. Gene 509, 195-200.
30. Peng, C.†; Pu, J.-Y.†; Song, L.-Q.†; Jian, X.-H.†; Tang, M.-C.; Tang, G.-L.* (2012) Hijacking a hydroxyethyl unit from a central metabolic ketose into a nonribosomal peptide assembly line. Proc. Natl. Acad. Sci. U.S.A. 109, 8540-8545. 29. Jian, X.-H.; Pan, H.-X.; Ning, T.-T.; Shi, Y.-Y.; Chen, Y.-S.; Li, Y.; Zeng, X.-W.; Xu, J.; Tang, G.-L.* (2012) Analysis of YM-216391 biosynthetic gene cluster and improvement of the cyclopeptide production in a heterologous host. ACS Chem. Biol. 7, 646-651. 28. Tang, M.-C.; Fu, C.-Y.; Tang, G.-L.* (2012) Characterization of SfmD as a heme peroxidase that catalyzes the regioselective hydroxylation of 3-methyltyrosine to 3-hydroxy-5-methyltyrosine in saframycin A biosynthesis. J. Biol. Chem. 287, 5112-5121. 27. Peng, C.; Tang, Y.-M.; Li, L.; Ding, W.; Deng, W.; Pu, J.-Y.; Liu, W.; Tang, G.-L.* (2012) In vivo investigation of the role of SfmO2 in saframycin A biosynthesis by structural characterization of the analogue saframycin O. Sci. China Chem. 55, 90-97. (2011)
24. Wang, J.-B.; Pan, H.-X.; Tang, G.-L.* (2011) Production of doramectin by rational engineering of the avermectin biosynthetic pathway. Bioorg. Med. Chem. Lett. 21, 3320-3323. (Before 2010)
Publications from Postdoctoral Work:
Publications from Graduate Work:
|
地址:上海市徐汇区零陵路345号君谋楼712室、715室、716室 |
电话: 021-54925112 |
唐功利课题组 © 版权所有 |